the Santa Fe Convention : XML transportation format for rfc1807 metadata format 

The Santa Fe Convention is discontinued.
Please use the Open
Archives Initiative Protocol for Metadata Harvesting instead.

The plain text DTD file can be retrieved here.
<! rfc1807 Metadata Set > <! This DTD can be used to represent the elements of the rfc1807 Metadata Set> <! Version 0.1, Carl Lagoze February 15, 2000 > <!ENTITY % doctype "rfc1807"> <!ELEMENT %doctype; (bibversion, id, entry, organization*, title*, type*, revision*, withdraw*, author*, corpauthor*, contact*, date*, pages*, copyright*, handle*, other_access*, retrieval*, keyword*, crcategory*, period*, series*, monitoring*, funding*, contract*, grant*, language*, notes*, abstract*)> <!ELEMENT bibversion (#PCDATA)> <!ELEMENT id (#PCDATA)> <!ELEMENT entry (#PCDATA)> <!ELEMENT organization (#PCDATA)> <!ELEMENT title (#PCDATA)> <!ELEMENT type (#PCDATA)> <!ELEMENT revision (#PCDATA)> <!ELEMENT withdraw (#PCDATA)> <!ELEMENT author (#PCDATA)> <!ELEMENT corpauthor (#PCDATA)> <!ELEMENT contact (#PCDATA)> <!ELEMENT date (#PCDATA)> <!ELEMENT pages (#PCDATA)> <!ELEMENT copyright (#PCDATA)> <!ELEMENT handle (#PCDATA)> <!ELEMENT other_access (#PCDATA)> <!ELEMENT retrieval (#PCDATA)> <!ELEMENT keyword (#PCDATA)> <!ELEMENT crcategory (#PCDATA)> <!ELEMENT period (#PCDATA)> <!ELEMENT series (#PCDATA)> <!ELEMENT monitoring (#PCDATA)> <!ELEMENT funding (#PCDATA)> <!ELEMENT contract (#PCDATA)> <!ELEMENT grant (#PCDATA)> <!ELEMENT language (#PCDATA)> <!ELEMENT notes (#PCDATA)> <!ELEMENT abstract (#PCDATA)>
The plain text sample record can be retrieved here.
<?xml version="1.0" encoding="UTF8" ?> <Disseminate count="0" version="1.0"> <rfc1807:rfc1807 xmlns:rfc1807="ftp://nic.merit.edu/document/rfc/rfc1807.txt"> <rfc1807:pages>10</rfc1807:pages> <rfc1807:title>Parikh's Theorem in Commutative Kleene Algebra</rfc1807:title> <rfc1807:entry>January 15, 1999</rfc1807:entry> <rfc1807:bibversion>CSTRv2.1</rfc1807:bib_version> <rfc1807:author>Hopkins, Mark</rfc1807:author> <rfc1807:author>Kozen, Dexter</rfc1807:author> <rfc1807:docid>CORNELLCS:TR991724</rfc1807:docid> <rfc1807:abstract>Parikh's Theorem says that the commutative image of every context free language is the commutative image of some regular set. Pilling has shown that this theorem is essentially a statement about least solutions of polynomial inequalities. We prove the following general theorem of commutative Kleene algebra, of which Parikh's and Pilling's theorems are special cases: Every system of polynomial inequalities $f_i(x_1,\ldots,x_n) \leq x_i$, $1\leq i\leq n$, over a commutative Kleene algebra $K$ has a unique least solution in $K^n$; moreover, the components of the solution are given by polynomials in the coefficients of the $f_i$. We also give a closedform solution in terms of the Jacobian matrix.</rfc1807:abstract> <rfc1807:date>January 4, 1999</rfc1807:date> </rfc1807:rfc1807> </Disseminate>
__________________  
get in touch with the Open Archives initiative by contacting openarchives@openarchives.org 

llast updated January 20th 2001 